Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38398633

RESUMO

Dendrobium officinale is an important edible and medicinal plant, with the Dendrobium officinale polysaccharide (DOP) being its primary active constituent, known for its diverse biological activities. In this study, DOP was extracted and characterized for its structural properties. The potential of DOP to ameliorate gastric ulcers (GUs) was investigated using an acetic-acid-induced GU model in rats. The results demonstrated that DOP exerted a multifaceted protective effect against GU, mitigating the deleterious impact on food intake and body weight in rats. DOP exhibited its protective action by attenuating cellular damage attributed to oxidative stress and inflammatory reactions mediated by enhanced activities of SOD, GSH, and GSH-PX, coupled with a downregulation in the expression of pro-inflammatory cytokines, including IL-1ß, IL-6, and TNF-α. Furthermore, DOP effectively inhibited apoptosis in gastric mucosa cells of acetic-acid-induced GU rat models and facilitated the self-repair of damaged tissues. Remarkably, the DOP-200 and DOP-400 groups outperformed omeprazole in reducing the expression of IL-6 and malondialdehyde (MDA) in tissues, as well as IL-1ß, IL-6, and TNF-α in serum. These groups also exhibited an improved expression of SOD in tissues and SOD, GSH, and GSH-PX in serum. A Western blot analysis of gastric mucosa demonstrated that the DOP-200 and DOP-400 groups significantly reduced the expression of NF-κBp65, phosphorylated NF-κBp65, FoxO3a, and Bim. The observed antagonism to GU appeared to be associated with the NF-κB cell pathway. Additionally, qRT-PCR results indicate that DOP reduced the mRNA transcription levels of IL-6, and TNF-α, which shows that the healing of GU is related to the reduction in the inflammatory reaction by DOP. However, the expression of EGF and VEGF decreased, suggesting that the mechanism of DOP inhibiting GU may not be directly related to EGF and VEGF, or there is an uncertain competitive relationship between them, so further research is needed.


Assuntos
Dendrobium , Úlcera Gástrica , Ratos , Animais , Dendrobium/química , Ácido Acético , Fator de Necrose Tumoral alfa/genética , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Fator de Crescimento Epidérmico , Interleucina-6 , Fator A de Crescimento do Endotélio Vascular , Polissacarídeos/farmacologia , Superóxido Dismutase
2.
Front Pharmacol ; 13: 1049117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523491

RESUMO

Triple-negative breast cancer (TNBC) is a severe threat to women's health because of its aggressive nature, early age of onset, and high recurrence rate. Therefore, in this study, we aimed to evaluate the anti-tumor effects of Gallic acid (GA) on the TNBC HCC1806 cells in vitro. The cell proliferation was detected by MTT and plate clone formation assays, cell apoptosis, cell cycle, and mitochondrial membrane potential (MMP) were analyzed by flow cytometry and Hoechst 33258 staining assays, and the intracellular reactive oxygen species (ROS) accumulation were also investigated. Real-Time PCR and western blot were examined to explore the mechanism of action. The results indicated that GA suppressed HCC1806 cells proliferation and promoted HCC1806 cells apoptosis. Meanwhile, GA treatment changed the morphology of the HCC1806 cells. In addition, GA blocked the HCC1806 cells cycle in the S phase, and it induced cells apoptosis accompanied by ROS accumulation and MMP depolarization. Real-Time PCR results suggested that GA increased Bax, Caspase-3, Caspase-9, P53, JINK and P38 mRNA expression, and decreased Bcl-2, PI3K, AKT and EGFR mRNA expression. Western blotting results suggested that GA increased Bax, cleaved-Caspase-3, cleaved-Caspase-9, P53, P-ERK1/2, P-JNK, P-P38 proteins expression, and decreased Bcl-2, P-PI3K, P-AKT, P-EGFR proteins expression. Furthermore, molecular docking suggested that GA has the high affinity for PI3K, AKT, EGFR, ERK1/2, JNK, and P38. In conclusion, GA could suppress HCC1806 cells proliferation and promote HCC1806 cells apoptosis through the mitochondrial apoptosis pathway and induces ROS generation which further inhibits PI3K/AKT/EGFR and activates MAPK signaling pathways. Our study will provide some new references for using GA in the treatment of TNBC.

3.
Metabolites ; 12(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35736412

RESUMO

Ellagic acid (EA) is a polyphenol dilactone that has been reported to have antipyretic, anti-inflammatory, anti-tumor, and antioxidant activities, but the mechanism of action has not been reported. In this study, serum metabolomics was used to explore the mechanism of EA on rat fever induced by beer yeast, and to screen out marker metabolites to provide a reference for the antipyretic effect of EA. The acute fever model of male Sprague Dawley rats involved subcutaneous injection with 20% aqueous suspension of yeast (15 mL/kg) in their back. At the same time of modeling, EA was given orally by 10 mL/kg intragastric administration for treatment. During the experiment, the temperature and its change values of rats were recorded, and Interleukin-6 (IL-6), Tumor Necrosis Factor-α (TNF-α), Prostaglandin E2 (PGE2), Cyclic Adenosine Monophosphate (cAMP), Superoxide Dismutase (SOD) and Malondialdehyde (MDA)­six physiological and biochemical indexes of rats­were detected after the experiment. In addition, the hypothalamus of each rat was analyzed by Western blot (WB), and the levels of Phospho Nuclear Factor kappa-B (P-NF-κB P65) and IkappaB-alpha (IKB-α) were detected. Then, the serum metabolites of rats in each group were detected and analyzed by gas chromatograph mass spectrometry and the multivariate statistical analysis method. Finally, when screening for differential metabolites, the potential target metabolic pathway of drug intervention was screened for through the enrichment analysis of differential metabolites. Pearson correlation analysis was used to systematically characterize the relationship between biomarkers and pharmacodynamic indicators. EA could reduce the temperature and its change value in yeast induced fever rats after 18 h (p < 0.05). The level of IL-6, TNF-α, PGE2, cAMP, SOD and MDA of the Model group (MG) increased significantly compared to the Normal group (NG) (p < 0.001) after EA treatment, while the levels of the six indexes in the serum and cerebrospinal fluid of yeast-induced rats decreased. The administration of yeast led to a significant increase in Hypothalamus P-NF-κB P65 and IKB-α levels. Treatment with EA led to a significant decrease in P-NF-κB P65 levels. Moreover, combined with VIP > 1 and p < 0.05 as screening criteria, the corresponding retention time and characteristic mass to charge ratio were compared with the NIST library, Match score > 80%, and a total of 15 differential metabolites were screened. EA administration significantly regulated 9 of 15 metabolites in rat serum. The 15 differential metabolites involved linoleic acid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, galactose metabolism, biosynthesis of unsaturated fatty acids and glycerolipid metabolism. Pharmacodynamic correlation analysis was conducted between 15 different metabolites and six detection indexes. There was a significant correlation between 13 metabolites and six detection indexes. D-(−)-lactic acid, glycerin, phosphoric acid, 5-oxo-L-proline were negatively correlated with TNF-α, and p values were statistically significant except for L-tyrosine. In addition, glycerin was negatively correlated with IL-6, PGE2 and MDA, while phosphoric acid was negatively correlated with IL-6. In conclusion, EA may play an antipyretic anti-inflammatory role through the inhibition of the IKB-α/NF-κB signaling pathway and five metabolic pathways, which may contribute to a further understanding of the therapeutic mechanisms of the fever of EA.

4.
Molecules ; 27(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458665

RESUMO

Fever is caused by an increase in the heat production process when the body is under the action of a heat source or the dysfunction of the temperature center. Ellagic acid (EA) is a polyphenol dilactone that has anti-inflammatory, anti-tumor, and antioxidant activities. Male Sprague-Dawley rats were injected yeast to reproduce an experimental fever model (150 ± 20 g), and the rectal temperature and its change values were subsequently taken 19 h later; the excessive production of interleukin-1ß (IL-1ß) and prostaglandin2 (PGE2) induced by yeast was regulated to normal by EA administration. Rat brain metabolomics investigation of pyrexia and the antipyretic anti-inflammatory effect of EA was performed using Ultra-High-Performance Liquid Chromatography-Mass spectrometry (UPLC-MS). Twenty-six metabolites, as potential biomarkers, significantly altered metabolites that were found in pyretic rats, and eleven metabolites, as biomarkers of the antipyretic mechanism of EA, were significantly adjusted by EA to help relieve pyrexia, which was involved in glycerophospholipid metabolism and sphingolipid metabolism, etc. In conclusion, potential metabolic biomarkers in the brain shed light on the mechanism of EA's antipyretic effects, mainly involving metabolic pathways, which may contribute to a further understanding of the therapeutic mechanisms of fever and therapeutic mechanism of EA.


Assuntos
Antipiréticos , Medicamentos de Ervas Chinesas , Animais , Anti-Inflamatórios/farmacologia , Antipiréticos/farmacologia , Biomarcadores/metabolismo , Encéfalo/metabolismo , Cromatografia Líquida , Medicamentos de Ervas Chinesas/farmacologia , Ácido Elágico/farmacologia , Ácido Elágico/uso terapêutico , Febre/tratamento farmacológico , Febre/metabolismo , Masculino , Metabolômica , Ratos , Ratos Sprague-Dawley , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas em Tandem
5.
Zhongguo Zhong Yao Za Zhi ; 47(4): 972-979, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35285197

RESUMO

The present study analyzed and identified the chemical constituents from ethyl acetate(EA) extract of Taxilli Herba with UPLC-Q-Exactive-MS and screened active xanthine oxidase(XO) inhibitors with HPLC. The analysis was performed on an Hypersil GOLD C_(18) reversed-phase column(2.1 mm×50 mm, 1.9 µm), with the mobile phase of water containing 1% formic acid(A) and methanol(B) under gradient elution, the flow rate of 0.3 mL·min~(-1), and the injection volume of 5 µL. ESI source was used for MS and the compounds were collected in positive and negative ion modes. Xcalibur 4.1 was used to analyze the retention time, accurate relative molecular weight, and fragmentation of the compounds. The inhibitory activity of some known compounds on XO was screened by HPLC. Thirty chemical constituents were identified, including phenolic acids and flavonoids by experimental data combined with information of standards, data reported previously, and databases, such as MzCloud and ChemSpider. The activities of 10 chemical components were screened. Gallic acid and naringenin chalcone had strong inhibitory activities on XO with IC_(50) of 57 µg·mL~(-1) and 108 µg·mL~(-1). UPLC-Q-Exactive-MS allows the accurate, rapid, and comprehensive identification of main chemical constituents from Taxilli Herba. Gallic acid and naringenin chalcone may be the active components of XO inhibitors.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Acetatos , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Xantina Oxidase
6.
Biomed Pharmacother ; 103: 1137-1145, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29715757

RESUMO

Madecassoside (MA), a triterpenoid saponin isolated from Centella asiatica, exerts various pharmacological activities including antioxidative and anti-inflammatory effects. The aim of this study was to explore the protective effect of MA in the treatment of lipopolysaccharide (LPS) and D-galactosamine (D-GalN)-induced acute liver failure(ALF) in mice. We hypothesized that MA administration may decrease the degree of liver injury caused by LPS/D-GalN. In this study, we investigated this hypothesis by treating a mouse model of LPS/D-GalN-induced liver injury with MA. Our study demonstrated that MA (20 mg/kg and 40 mg/kg) treatment for 10 days attenuated LPS/D-GalN-induced liver injury by protecting liver function, suppressing the production of inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and IL-6, and recovering antioxidant enzyme activity. MA also significantly suppressed LPS-stimulated protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 by blocking the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and eukaryotic transcription factor nuclear factor-kappa B (NF-κB). In addition, MA treatment enhanced protein levels of heme oxygenase (HO)-1 and anti-oxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) through the upregulation of nuclear factor E2-related factor 2 (Nrf2) in LPS-stimulated liver injury. These results suggest that MA is a promising agent for the treatment of LPS/D-GalN-induced liver injury that could serve as a candidate for the development of a hepatoprotective drug against ALF.


Assuntos
Antioxidantes/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/antagonistas & inibidores , Triterpenos/uso terapêutico , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Antioxidantes/isolamento & purificação , Centella/química , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Modelos Animais de Doenças , Galactosamina/toxicidade , Lipopolissacarídeos/toxicidade , Masculino , Camundongos Endogâmicos , Transdução de Sinais , Triterpenos/isolamento & purificação
7.
J Pharmacol Sci ; 132(2): 131-137, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27707649

RESUMO

The aim of this study was to explore the anti-tumor effect and therapeutic potential of rosmarinic acid (RA) in the treatment of hepatocellular carcinoma (HCC). RA at 75, 150 and 300 mg/kg was given to H22 tumor-bearing mice by intragastric administration once daily for 10 consecutive days. Levels of inflammatory and angiogenic factors, including interleukin-1ß (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), vascular endothelial growth factor (VEGF), and transforming growth factor-ß (TGF-ß) were measured by enzyme linked immunosorbent assays (ELISA). Protein levels of phosphorylated NF-κB p65 and p65 were detected by western blot. mRNA level of NF-κB p65 was analyzed by qRT-PCR. The results showed that RA could effectively suppress tumor growth with fewer toxic effects by regulating the secretion of cytokines associated with inflammation and angiogenesis, and suppressing the expression of NF-κB p65 in the xenograft microenvironment. Our findings unveil the possible anti-tumor mechanisms of RA and support RA as a potential drug for the treatment of HCC.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Cinamatos/uso terapêutico , Depsídeos/uso terapêutico , Mediadores da Inflamação/antagonistas & inibidores , Neoplasias Hepáticas Experimentais/tratamento farmacológico , NF-kappa B/antagonistas & inibidores , Inibidores da Angiogênese/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Carcinoma Hepatocelular/metabolismo , Cinamatos/farmacologia , Depsídeos/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Masculino , Camundongos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
8.
PLoS One ; 10(2): e0116010, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25714369

RESUMO

A rapid, sensitive and selective high-performance liquid chromatography-tandem mass spectrometric method (HPLC-MS) was developed and validated to determine the 14-(3-methylbenzyl)matrine (3MBM) and 14-(4-methylbenzyl)matrine (4MBM) levels in rat plasma in the present study. The analytes were separated using a C18 column (1.9 µm, 2.1 mm × 100 mm) equipped with a Security Guard C18 column (5 µm, 2.1 mm × 10 mm), followed by detection via triple-quadrupole mass spectrometry using an electrospray ionization (ESI) source. Sample pretreatment involved one-step protein precipitation with isopropanol:ethyl acetate (v/v, 25:75), and pseudoephedrine hydrochloride was used as an internal standard. The method was linear in the concentration range of 5-2000 ng/ml for both compounds. The intra-day and inter-day relative standard deviations (RSDs) were less than 15%, and all relative errors (REs) were within 15%. The proposed method enables the unambiguous identification and quantification of these two compounds in vivo. This study is the first to determine the 3MBM and 4MBM levels in rat plasma after oral administration of these compounds. These results provide a meaningful basis for evaluating the clinical applications of these medicines.


Assuntos
Alcaloides/farmacocinética , Cromatografia Líquida , Quinolizinas/farmacocinética , Espectrometria de Massas em Tandem , Alcaloides/administração & dosagem , Alcaloides/química , Animais , Estabilidade de Medicamentos , Masculino , Estrutura Molecular , Quinolizinas/administração & dosagem , Quinolizinas/química , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Matrinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...